Logo Search packages:      
Sourcecode: octave3.2 version File versions

mappers.cc

/*

Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
              2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cctype>
#include <cfloat>

#include "lo-ieee.h"
#include "lo-specfun.h"
#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "variables.h"

DEFUN (abs, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} abs (@var{z})\n\
Compute the magnitude of @var{z}, defined as\n\
@tex\n\
$|z| = \\sqrt{x^2 + y^2}$.\n\
@end tex\n\
@ifnottex\n\
|@var{z}| = @code{sqrt (x^2 + y^2)}.\n\
@end ifnottex\n\
\n\
For example,\n\
\n\
@example\n\
@group\n\
abs (3 + 4i)\n\
     @result{} 5\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).abs ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(abs (1), 1);
%!assert(abs (-3.5), 3.5);
%!assert(abs (3+4i), 5);
%!assert(abs (3-4i), 5);
%!assert(abs ([1.1, 3i; 3+4i, -3-4i]), [1.1, 3; 5, 5]);

%!assert(abs (single(1)), single(1));
%!assert(abs (single(-3.5)), single(3.5));
%!assert(abs (single(3+4i)), single(5));
%!assert(abs (single(3-4i)), single(5));
%!assert(abs (single([1.1, 3i; 3+4i, -3-4i])), single([1.1, 3; 5, 5]));

%!error abs ();
%!error abs (1, 2);

 */

DEFUN (acos, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} acos (@var{x})\n\
Compute the inverse cosine in radians for each element of @var{x}.\n\
@seealso{cos, acosd}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).acos ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! v = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi];
%! x = [1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1];
%! assert(acos (x), v, sqrt(eps));

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! v = single ([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]);
%! x = single ([1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]);
%! assert(acos (x), v, sqrt(eps('single')));

%!error acos ();
%!error acos (1, 2);

*/

DEFUN (acosh, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} acosh (@var{x})\n\
Compute the inverse hyperbolic cosine for each element of @var{x}.\n\
@seealso{cosh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).acosh ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! v = [0, pi/2*i, pi*i, pi/2*i];
%! x = [1, 0, -1, 0];
%! assert(acosh (x), v, sqrt(eps));

%!test
%! v = single([0, pi/2*i, pi*i, pi/2*i]);
%! x = single([1, 0, -1, 0]);
%! assert(acosh (x), v, sqrt (eps('single')));

%!error acosh ();
%!error acosh (1, 2);

*/

DEFUN (angle, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} angle (@var{z})\n\
See arg.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).arg ();
  else
    print_usage ();

  return retval;
}

DEFUN (arg, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} arg (@var{z})\n\
@deftypefnx {Mapping Function} {} angle (@var{z})\n\
Compute the argument of @var{z}, defined as,\n\
@tex\n\
$\\theta = atan2 (y, x),$\n\
@end tex\n\
@ifnottex\n\
@var{theta} = @code{atan2 (@var{y}, @var{x})},\n\
@end ifnottex\n\
in radians.\n\
\n\
For example,\n\
\n\
@example\n\
@group\n\
arg (3 + 4i)\n\
     @result{} 0.92730\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).arg ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(arg (1), 0);
%!assert(arg (i), pi/2);
%!assert(arg (-1), pi);
%!assert(arg (-i), -pi/2);
%!assert(arg ([1, i; -1, -i]), [0, pi/2; pi, -pi/2]);

%!assert(arg (single(1)), single(0));
%!assert(arg (single(i)), single(pi/2));
%!assert(arg (single(-1)), single(pi));
%!assert(arg (single(-i)), single(-pi/2));
%!assert(arg (single([1, i; -1, -i])), single([0, pi/2; pi, -pi/2]), 2e1*eps('single'));

%!error arg ();
%!error arg (1, 2);

*/

DEFUN (asin, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} asin (@var{x})\n\
Compute the inverse sine in radians for each element of @var{x}.\n\
@seealso{sin, asind}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).asin ();
  else
    print_usage ();

  return retval;
}

/*
%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! v = [0, pi/6, pi/4, pi/3, pi/2, pi/3, pi/4, pi/6, 0];
%! x = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0];
%! assert(all (abs (asin (x) - v) < sqrt (eps)));
%!error asin ();
%!error asin (1, 2);
*/

DEFUN (asinh, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} asinh (@var{x})\n\
Compute the inverse hyperbolic sine for each element of @var{x}.\n\
@seealso{sinh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).asinh ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! v = [0, pi/2*i, 0, -pi/2*i];
%! x = [0, i, 0, -i];
%! assert(asinh (x), v,  sqrt (eps));

%!test
%! v = single([0, pi/2*i, 0, -pi/2*i]);
%! x = single([0, i, 0, -i]);
%! assert(asinh (x), v,  sqrt (eps('single')));

%!error asinh ();
%!error asinh (1, 2);

*/

DEFUN (atan, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} atan (@var{x})\n\
Compute the inverse tangent in radians for each element of @var{x}.\n\
@seealso{tan, atand}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).atan ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! v = [0, pi/6, pi/4, pi/3, -pi/3, -pi/4, -pi/6, 0];
%! x = [0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0];
%! assert(atan (x), v, sqrt (eps));

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! v = single([0, pi/6, pi/4, pi/3, -pi/3, -pi/4, -pi/6, 0]);
%! x = single([0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]);
%! assert(atan (x), v, sqrt (eps('single')));

%!error atan ();
%!error atan (1, 2);

 */

DEFUN (atanh, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} atanh (@var{x})\n\
Compute the inverse hyperbolic tangent for each element of @var{x}.\n\
@seealso{tanh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).atanh ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! v = [0, 0];
%! x = [0, 0];
%! assert(atanh (x), v, sqrt (eps));

%!test
%! v = single([0, 0]);
%! x = single([0, 0]);
%! assert(atanh (x), v, sqrt (eps('single')));

%!error atanh ();
%!error atanh (1, 2);

*/

DEFUN (ceil, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} ceil (@var{x})\n\
Return the smallest integer not less than @var{x}.  This is equivalent to\n\
rounding towards positive infinity.  If @var{x} is\n\
complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.\n\
@example\n\
@group\n\
ceil ([-2.7, 2.7])\n\
   @result{}  -2   3\n\
@end group\n\
@end example\n\
@seealso{floor, round, fix}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).ceil ();
  else
    print_usage ();

  return retval;
}

/*

%% double precision
%!assert(ceil ([2, 1.1, -1.1, -1]), [2, 2, -1, -1]);

%% compelx double precison 
%!assert(ceil ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i]), [2+2i, 2+2i, -1-i, -1-i]);

%% single precision
%!assert(ceil (single([2, 1.1, -1.1, -1])), single([2, 2, -1, -1]));

%% compelx single preci
%!assert(ceil (single ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i])), single([2+2i, 2+2i, -1-i, -1-i]));

%!error ceil ();
%!error ceil (1, 2);

*/

DEFUN (conj, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} conj (@var{z})\n\
Return the complex conjugate of @var{z}, defined as\n\
@tex\n\
$\\bar{z} = x - iy$.\n\
@end tex\n\
@ifnottex\n\
@code{conj (@var{z})} = @var{x} - @var{i}@var{y}.\n\
@end ifnottex\n\
@seealso{real, imag}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).conj ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(conj (1), 1);
%!assert(conj (i), -i)
%!assert(conj (1+i), 1-i)
%!assert(conj (1-i), 1+i)
%!assert(conj ([-1, -i; -1+i, -1-i]), [-1, i; -1-i, -1+i]);

%!assert(conj (single(1)), single(1));
%!assert(conj (single(i)), single(-i))
%!assert(conj (single(1+i)), single(1-i))
%!assert(conj (single(1-i)), single(1+i))
%!assert(conj (single([-1, -i; -1+i, -1-i])), single([-1, i; -1-i, -1+i]));

%!error conj ();
%!error conj (1, 2);

*/

DEFUN (cos, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} cos (@var{x})\n\
Compute the cosine for each element of @var{x} in radians.\n\
@seealso{acos, cosd, cosh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).cos ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! x = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi];
%! v = [1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1];
%! assert(cos (x), v, sqrt (eps));

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! x = single([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]);
%! v = single([1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]);
%! assert(cos (x), v, sqrt (eps('single')));

%!error cos ();
%!error cos (1, 2);

 */

DEFUN (cosh, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} cosh (@var{x})\n\
Compute the hyperbolic cosine for each element of @var{x}.\n\
@seealso{acosh, sinh, tanh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).cosh ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! x = [0, pi/2*i, pi*i, 3*pi/2*i];
%! v = [1, 0, -1, 0];
%! assert(cosh (x), v, sqrt (eps));

%!test
%! x = single([0, pi/2*i, pi*i, 3*pi/2*i]);
%! v = single([1, 0, -1, 0]);
%! assert(cosh (x), v, sqrt (eps ('single')));

%!error cosh ();
%!error cosh (1, 2);

*/

DEFUN (erf, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} erf (@var{z})\n\
Computes the error function,\n\
@iftex\n\
@tex\n\
$$\n\
 {\\rm erf} (z) = {2 \\over \\sqrt{\\pi}}\\int_0^z e^{-t^2} dt\n\
$$\n\
@end tex\n\
@end iftex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
                         z\n\
                        /\n\
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt\n\
                        /\n\
                     t=0\n\
@end group\n\
@end example\n\
@end ifnottex\n\
@seealso{erfc, erfinv}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).erf ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! a = -1i*sqrt(-1/(6.4187*6.4187));
%! assert (erf(a), erf(real(a)));

%!test
%! x=[0,.5,1];
%! v=[0, .520499877813047, .842700792949715];
%! assert(all(abs(erf(x)-v)<1.e-10) &&  all(abs(erf(-x)+v)<1.e-10) && all(abs(erfc(x)+v-1)<1.e-10) && all(abs(erfinv(v)-x)<1.e-10));

%!test
%! a = -1i*sqrt(single (-1/(6.4187*6.4187)));
%! assert (erf(a), erf(real(a)));

%!test
%! x=single ([0,.5,1]);
%! v=single ([0, .520499877813047, .842700792949715]);
%! assert(all(abs(erf(x)-v)<1.e-6) &&  all(abs(erf(-x)+v)<1.e-6) && all(abs(erfc(x)+v-1)<1.e-6) && all(abs(erfinv(v)-x)<1.e-6));

%% test/octave.test/arith/erf-2.m
%!error erf();

%% test/octave.test/arith/erf-3.m
%!error erf(1,2);



*/

DEFUN (erfc, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} erfc (@var{z})\n\
Computes the complementary error function,\n\
@iftex\n\
@tex\n\
$1 - {\\rm erf} (z)$.\n\
@end tex\n\
@end iftex\n\
@ifnottex\n\
@code{1 - erf (@var{z})}.\n\
@end ifnottex\n\
@seealso{erf, erfinv}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).erfc ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! a = -1i*sqrt(-1/(6.4187*6.4187));
%! assert (erfc(a), erfc(real(a)));

*/

DEFUN (exp, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} exp (@var{x})\n\
Compute\n\
@tex\n\
$e^{x}$\n\
@end tex\n\
@ifnottex\n\
@code{e^x}\n\
@end ifnottex\n\
for each element of @var{x}.  To compute the matrix\n\
exponential, see @ref{Linear Algebra}.\n\
@seealso{log}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).exp ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(exp ([0, 1, -1, -1000]), [1, e, 1/e, 0], sqrt (eps));
%!assert(exp (1+i), e * (cos (1) + sin (1) * i), sqrt (eps));
%!assert(exp (single([0, 1, -1, -1000])), single([1, e, 1/e, 0]), sqrt (eps('single')));
%!assert(exp (single(1+i)), single (e * (cos (1) + sin (1) * i)), sqrt (eps('single')));

%!error exp ();
%!error exp (1, 2);

%!assert(exp (Inf) == Inf && exp (-Inf) == 0 && isnan (exp (NaN)));
%!assert(exp (Inf ('single')) == Inf('single') && exp (-Inf('single')) == 0 && isnan (exp (NaN('single'))));

*/

DEFUN (expm1, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} expm1 (@var{x})\n\
Compute\n\
@tex\n\
$ e^{x} - 1 $\n\
@end tex\n\
@ifnottex\n\
@code{exp (@var{x}) - 1}\n\
@end ifnottex\n\
accurately in the neighborhood of zero.\n\
@seealso{exp}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).expm1 ();
  else
    print_usage ();

  return retval;
}

DEFUN (finite, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} finite (@var{x})\n\
Return 1 for elements of @var{x} that are finite values and zero\n\
otherwise.  For example,\n\
\n\
@example\n\
@group\n\
finite ([13, Inf, NA, NaN])\n\
     @result{} [ 1, 0, 0, 0 ]\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).finite ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(!(finite (Inf)));
%!assert(!(finite (NaN)));
%!assert(finite (rand(1,10)));

%!assert(!(finite (single(Inf))));
%!assert(!(finite (single(NaN))));
%!assert(finite (single(rand(1,10))));

 */

DEFUN (fix, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} fix (@var{x})\n\
Truncate fractional portion of @var{x} and return the integer portion.  This\n\
is equivalent to rounding towards zero.  If @var{x} is complex, return\n\
@code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.\n\
@example\n\
@group\n\
fix ([-2.7, 2.7])\n\
   @result{} -2   2\n\
@end group\n\
@end example\n\
@seealso{ceil, floor, round}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).fix ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(fix ([1.1, 1, -1.1, -1]), [1, 1, -1, -1]);
%!assert(fix ([1.1+1.1i, 1+i, -1.1-1.1i, -1-i]), [1+i, 1+i, -1-i, -1-i]);
%!assert(fix (single([1.1, 1, -1.1, -1])), single([1, 1, -1, -1]));
%!assert(fix (single([1.1+1.1i, 1+i, -1.1-1.1i, -1-i])), single([1+i, 1+i, -1-i, -1-i]));

%!error fix ();
%!error fix (1, 2);

*/

DEFUN (floor, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} floor (@var{x})\n\
Return the largest integer not greater than @var{x}.  This is equivalent to\n\
rounding towards negative infinity.  If @var{x} is\n\
complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.\n\
@example\n\
@group\n\
floor ([-2.7, 2.7])\n\
     @result{} -3   2\n\
@end group\n\
@end example\n\
@seealso{ceil, round, fix}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).floor ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(floor ([2, 1.1, -1.1, -1]), [2, 1, -2, -1]);
%!assert(floor ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i]), [2+2i, 1+i, -2-2i, -1-i]);
%!assert(floor (single ([2, 1.1, -1.1, -1])), single ([2, 1, -2, -1]));
%!assert(floor (single([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i])), single([2+2i, 1+i, -2-2i, -1-i]));

%!error floor ();
%!error floor (1, 2);

*/

DEFUN (gamma, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} gamma (@var{z})\n\
Computes the Gamma function,\n\
@iftex\n\
@tex\n\
$$\n\
 \\Gamma (z) = \\int_0^\\infty t^{z-1} e^{-t} dt.\n\
$$\n\
@end tex\n\
@end iftex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
            infinity\n\
            /\n\
gamma (z) = | t^(z-1) exp (-t) dt.\n\
            /\n\
         t=0\n\
@end group\n\
@end example\n\
@end ifnottex\n\
@seealso{gammainc, lgamma}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).gamma ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! a = -1i*sqrt(-1/(6.4187*6.4187));
%! assert (gamma(a), gamma(real(a)));

%!test
%! x = [.5, 1, 1.5, 2, 3, 4, 5];
%! v = [sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24];
%! assert(gamma(x), v, sqrt(eps))

%!test
%! a = single(-1i*sqrt(-1/(6.4187*6.4187)));
%! assert (gamma(a), gamma(real(a)));

%!test
%! x = single([.5, 1, 1.5, 2, 3, 4, 5]);
%! v = single([sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]);
%! assert(gamma(x), v, sqrt(eps('single')))

%!error gamma();
%!error gamma(1,2);

*/

DEFUN (imag, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} imag (@var{z})\n\
Return the imaginary part of @var{z} as a real number.\n\
@seealso{real, conj}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).imag ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(imag (1), 0);
%!assert(imag (i), 1);
%!assert(imag (1+i), 1);
%!assert(imag ([i, 1; 1, i]), full (eye (2)));

%!assert(imag (single(1)), single(0));
%!assert(imag (single(i)), single(1));
%!assert(imag (single(1+i)), single(1));
%!assert(imag (single([i, 1; 1, i])), full (eye (2,'single')));

%!error imag ();
%!error imag (1, 2);

 */

DEFUNX ("isalnum", Fisalnum, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isalnum (@var{s})\n\
Return 1 for characters that are letters or digits (@code{isalpha\n\
(@var{s})} or @code{isdigit (@var{s})} is true).\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisalnum ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("isalpha", Fisalpha, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isalpha (@var{s})\n\
@deftypefnx {Mapping Function} {} isletter (@var{s})\n\
Return true for characters that are letters (@code{isupper (@var{s})}\n\
or @code{islower (@var{s})} is true).\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisalpha ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("isascii", Fisascii, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isascii (@var{s})\n\
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisascii ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("iscntrl", Fiscntrl, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} iscntrl (@var{s})\n\
Return 1 for control characters.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xiscntrl ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("isdigit", Fisdigit, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isdigit (@var{s})\n\
Return 1 for characters that are decimal digits.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisdigit ();
  else
    print_usage ();

  return retval;
}

DEFUN (isinf, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isinf (@var{x})\n\
Return 1 for elements of @var{x} that are infinite and zero\n\
otherwise.  For example,\n\
\n\
@example\n\
@group\n\
isinf ([13, Inf, NA, NaN])\n\
     @result{} [ 0, 1, 0, 0 ]\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).isinf ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(isinf (Inf));
%!assert(!isinf (NaN));
%!assert(!(isinf (NA)));
%!assert(isinf (rand(1,10)), false(1,10));
%!assert(isinf([NaN -Inf -1 0 1 Inf NA]), [false, true, false, false, false, true, false]);

%!assert(isinf (single(Inf)));
%!assert(!(isinf (single(NaN))));
%!assert(!(isinf (single(NA))));
%!assert(isinf (single(rand(1,10))), false(1,10));
%!assert(isinf(single([NaN -Inf -1 0 1 Inf NA])), [false, true, false, false, false, true, false]);

 */

DEFUNX ("isgraph", Fisgraph, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isgraph (@var{s})\n\
Return 1 for printable characters (but not the space character).\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisgraph ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("islower", Fislower, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} islower (@var{s})\n\
Return 1 for characters that are lower case letters.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xislower ();
  else
    print_usage ();

  return retval;
}

DEFUN (isna, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isna (@var{x})\n\
Return 1 for elements of @var{x} that are NA (missing) values and zero\n\
otherwise.  For example,\n\
\n\
@example\n\
@group\n\
isna ([13, Inf, NA, NaN])\n\
     @result{} [ 0, 0, 1, 0 ]\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).isna ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(!(isna (Inf)));
%!assert(!isna (NaN));
%!assert(isna (NA));
%!assert(isna (rand(1,10)), false(1,10));
%!assert(isna([NaN -Inf -1 0 1 Inf NA]), [false, false, false, false, false, false, true]);

%!assert(!(isna (single(Inf))));
%!assert(!isna (single(NaN)));
%!assert(isna (single(NA)));
%!assert(isna (single(rand(1,10))), false(1,10));
%!assert(isna(single([NaN -Inf -1 0 1 Inf NA])), [false, false, false, false, false, false, true]);

 */

DEFUN (isnan, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isnan (@var{x})\n\
Return 1 for elements of @var{x} that are NaN values and zero\n\
otherwise.  NA values are also considered NaN values.  For example,\n\
\n\
@example\n\
@group\n\
isnan ([13, Inf, NA, NaN])\n\
     @result{} [ 0, 0, 1, 1 ]\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).isnan ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(!(isnan (Inf)));
%!assert(isnan (NaN));
%!assert(isnan (NA));
%!assert(isnan (rand(1,10)), false(1,10));
%!assert(isnan([NaN -Inf -1 0 1 Inf NA]), [true, false, false, false, false, false, true]);

%!assert(!(isnan (single(Inf))));
%!assert(isnan (single(NaN)));
%!assert(isnan (single(NA)));
%!assert(isnan (single(rand(1,10))), false(1,10));
%!assert(isnan(single([NaN -Inf -1 0 1 Inf NA])), [true, false, false, false, false, false, true]);

 */

DEFUNX ("isprint", Fisprint, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isprint (@var{s})\n\
Return 1 for printable characters (including the space character).\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisprint ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("ispunct", Fispunct, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} ispunct (@var{s})\n\
Return 1 for punctuation characters.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xispunct ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("isspace", Fisspace, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isspace (@var{s})\n\
Return 1 for whitespace characters (space, formfeed, newline,\n\
carriage return, tab, and vertical tab).\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisspace ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("isupper", Fisupper, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isupper (@var{s})\n\
Return 1 for upper case letters.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisupper ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("isxdigit", Fisxdigit, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} isxdigit (@var{s})\n\
Return 1 for characters that are hexadecimal digits.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xisxdigit ();
  else
    print_usage ();

  return retval;
}

DEFUN (lgamma, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} lgamma (@var{x})\n\
@deftypefnx {Mapping Function} {} gammaln (@var{x})\n\
Return the natural logarithm of the gamma function of @var{x}.\n\
@seealso{gamma, gammainc}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).lgamma ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! a = -1i*sqrt(-1/(6.4187*6.4187));
%! assert (lgamma(a), lgamma(real(a)));

%!test
%! x = [.5, 1, 1.5, 2, 3, 4, 5];
%! v = [sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24];
%! assert(lgamma(x), log(v), sqrt(eps))

%!test
%! a = single(-1i*sqrt(-1/(6.4187*6.4187)));
%! assert (lgamma(a), lgamma(real(a)));

%!test
%! x = single([.5, 1, 1.5, 2, 3, 4, 5]);
%! v = single([sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]);
%! assert(lgamma(x), log(v), sqrt(eps ('single')))

%!error lgamma();
%!error lgamma(1,2);

*/

DEFUN (log, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} log (@var{x})\n\
Compute the natural logarithm,\n\
@tex\n\
$\\ln{(x)},$\n\
@end tex\n\
@ifnottex\n\
@code{ln (@var{x})},\n\
@end ifnottex\n\
for each element of @var{x}.  To compute the\n\
matrix logarithm, see @ref{Linear Algebra}.\n\
@seealso{exp, log1p, log2, log10, logspace}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).log ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(log ([1, e, e^2]), [0, 1, 2], sqrt (eps));
%!assert(log ([-0.5, -1.5, -2.5]), log([0.5, 1.5, 2.5]) + pi*1i, sqrt (eps));

%!assert(log (single([1, e, e^2])), single([0, 1, 2]), sqrt (eps('single')));
%!assert(log (single([-0.5, -1.5, -2.5])), single(log([0.5, 1.5, 2.5]) + pi*1i), 4*eps('single'));

%!error log ();
%!error log (1, 2);

 */

DEFUN (log10, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} log10 (@var{x})\n\
Compute the base-10 logarithm of each element of @var{x}.\n\
@seealso{log, log2, logspace, exp}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).log10 ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(log10 ([0.01, 0.1, 1, 10, 100]), [-2, -1, 0, 1, 2], sqrt (eps));
%!assert(log10 (single([0.01, 0.1, 1, 10, 100])), single([-2, -1, 0, 1, 2]), sqrt (eps ('single')));

%!error log10 ();
%!error log10 (1, 2);

*/

DEFUN (log1p, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} log1p (@var{x})\n\
Compute\n\
@tex\n\
$\\ln{(1 + x)}$\n\
@end tex\n\
@ifnottex\n\
@code{log (1 + @var{x})}\n\
@end ifnottex\n\
accurately in the neighborhood of zero.\n\
@seealso{log, exp, expm1}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).log1p ();
  else
    print_usage ();

  return retval;
}

DEFUN (real, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} real (@var{z})\n\
Return the real part of @var{z}.\n\
@seealso{imag, conj}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).real ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(real (1), 1);
%!assert(real (i), 0);
%!assert(real (1+i), 1);
%!assert(real ([1, i; i, 1]), full (eye (2)));

%!assert(real (single(1)), single(1));
%!assert(real (single(i)), single(0));
%!assert(real (single(1+i)), single(1));
%!assert(real (single([1, i; i, 1])), full (eye (2,'single')));

%!error real ();
%!error real (1, 2);

*/

DEFUN (round, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} round (@var{x})\n\
Return the integer nearest to @var{x}.  If @var{x} is complex, return\n\
@code{round (real (@var{x})) + round (imag (@var{x})) * I}.\n\
@example\n\
@group\n\
round ([-2.7, 2.7])\n\
     @result{} -3   3\n\
@end group\n\
@end example\n\
@seealso{ceil, floor, fix}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).round ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(round (1), 1);
%!assert(round (1.1), 1);
%!assert(round (5.5), 6);
%!assert(round (i), i);
%!assert(round (2.5+3.5i), 3+4i);
%!assert(round (-2.6), -3);
%!assert(round ([1.1, -2.4; -3.7, 7.1]), [1, -2; -4, 7]);

%!assert(round (single(1)), single(1));
%!assert(round (single(1.1)), single(1));
%!assert(round (single(5.5)), single(6));
%!assert(round (single(i)), single(i));
%!assert(round (single(2.5+3.5i)), single(3+4i));
%!assert(round (single(-2.6)), single(-3));
%!assert(round (single([1.1, -2.4; -3.7, 7.1])), single([1, -2; -4, 7]));

%!error round ();
%!error round (1, 2);

*/

DEFUN (roundb, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} roundb (@var{x})\n\
Return the integer nearest to @var{x}.  If there are two nearest\n\
integers, return the even one (banker's rounding).  If @var{x} is complex,\n\
return @code{roundb (real (@var{x})) + roundb (imag (@var{x})) * I}.\n\
@seealso{round}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).roundb ();
  else
    print_usage ();

  return retval;
}

DEFUN (sign, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} sign (@var{x})\n\
Compute the @dfn{signum} function, which is defined as\n\
@tex\n\
$$\n\
{\\rm sign} (@var{x}) = \\cases{1,&$x>0$;\\cr 0,&$x=0$;\\cr -1,&$x<0$.\\cr}\n\
$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
           -1, x < 0;\n\
sign (x) =  0, x = 0;\n\
            1, x > 0.\n\
@end group\n\
@end example\n\
@end ifnottex\n\
\n\
For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).signum ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(sign (-2) , -1);
%!assert(sign (3), 1);
%!assert(sign (0), 0);
%!assert(sign ([1, -pi; e, 0]), [1, -1; 1, 0]);

%!assert(sign (single(-2)) , single(-1));
%!assert(sign (single(3)), single(1));
%!assert(sign (single(0)), single(0));
%!assert(sign (single([1, -pi; e, 0])), single([1, -1; 1, 0]));

%!error sign ();
%!error sign (1, 2);

*/

DEFUN (sin, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} sin (@var{x})\n\
Compute the sine for each element of @var{x} in radians.\n\
@seealso{asin, sind, sinh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).sin ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! x = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi];
%! v = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0];
%! assert(sin (x), v, sqrt (eps));

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! x = single([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]);
%! v = single([0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]);
%! assert(sin (x), v, sqrt (eps('single')));

%!error sin ();
%!error sin (1, 2);

*/

DEFUN (sinh, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} sinh (@var{x})\n\
Compute the hyperbolic sine for each element of @var{x}.\n\
@seealso{asinh, cosh, tanh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).sinh ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! x = [0, pi/2*i, pi*i, 3*pi/2*i];
%! v = [0, i, 0, -i];
%! assert(sinh (x), v, sqrt (eps));

%!test
%! x = single([0, pi/2*i, pi*i, 3*pi/2*i]);
%! v = single([0, i, 0, -i]);
%! assert(sinh (x), v, sqrt (eps('single')));

%!error sinh ();
%!error sinh (1, 2);

 */

DEFUN (sqrt, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} sqrt (@var{x})\n\
Compute the square root of each element of @var{x}.  If @var{x} is negative,\n\
a complex result is returned.  To compute the matrix square root, see\n\
@ref{Linear Algebra}.\n\
@seealso{realsqrt}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).sqrt ();
  else
    print_usage ();

  return retval;
}

/*

%!assert(sqrt (4), 2)
%!assert(sqrt (-1), i)
%!assert(sqrt (1+i), exp (0.5 * log (1+i)), sqrt (eps));
%!assert(sqrt([4, -4; i, 1-i]), [2, 2i; exp(0.5 * log (i)), exp(0.5 * log (1-i))], sqrt(eps));

%!assert(sqrt (single(4)), single(2))
%!assert(sqrt (single(-1)), single(i))
%!assert(sqrt (single(1+i)), single(exp (0.5 * log (1+i))), sqrt (eps('single')));
%!assert(sqrt(single([4, -4; i, 1-i])), single([2, 2i; exp(0.5 * log (i)), exp(0.5 * log (1-i))]), sqrt(eps('single')));

%!error sqrt ();
%!error sqrt (1, 2);

*/

DEFUN (tan, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} tan (@var{z})\n\
Compute the tangent for each element of @var{x} in radians.\n\
@seealso{atan, tand, tanh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).tan ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! x = [0, pi/6, pi/4, pi/3, 2*pi/3, 3*pi/4, 5*pi/6, pi];
%! v = [0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0];
%! assert(tan (x), v,  sqrt (eps));

%!test
%! rt2 = sqrt (2);
%! rt3 = sqrt (3);
%! x = single([0, pi/6, pi/4, pi/3, 2*pi/3, 3*pi/4, 5*pi/6, pi]);
%! v = single([0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]);
%! assert(tan (x), v,  sqrt (eps('single')));

%!error tan ();
%!error tan (1, 2);

*/

DEFUN (tanh, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} tanh (@var{x})\n\
Compute hyperbolic tangent for each element of @var{x}.\n\
@seealso{atanh, sinh, cosh}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).tanh ();
  else
    print_usage ();

  return retval;
}

/*

%!test
%! x = [0, pi*i];
%! v = [0, 0];
%! assert(tanh (x), v, sqrt (eps));

%!test
%! x = single([0, pi*i]);
%! v = single([0, 0]);
%! assert(tanh (x), v, sqrt (eps('single')));

%!error tanh ();
%!error tanh (1, 2);

*/

DEFUNX ("toascii", Ftoascii, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} toascii (@var{s})\n\
Return ASCII representation of @var{s} in a matrix.  For example,\n\
\n\
@example\n\
@group\n\
toascii (\"ASCII\")\n\
     @result{} [ 65, 83, 67, 73, 73 ]\n\
@end group\n\
\n\
@end example\n\
@seealso{char}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xtoascii ();
  else
    print_usage ();

  return retval;
}

DEFUNX ("tolower", Ftolower, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Mapping Function} {} tolower (@var{s})\n\
@deftypefnx {Mapping Function} {} lower (@var{s})\n\
Return a copy of the string or cell string @var{s}, with each upper-case\n\
character replaced by the corresponding lower-case one; non-alphabetic\n\
characters are left unchanged.  For example,\n\
\n\
@example\n\
@group\n\
tolower (\"MiXeD cAsE 123\")\n\
     @result{} \"mixed case 123\"\n\
@end group\n\
@end example\n\
@seealso{toupper}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xtolower ();
  else
    print_usage ();

  return retval;
}

DEFALIAS (lower, tolower);

/*
 
%!error <Invalid call to tolower.*> tolower();
%!error <Invalid call to tolower.*> lower();
%!assert(tolower("OCTAVE"), "octave");
%!assert(tolower("123OCTave!_&"), "123octave!_&");
%!assert(tolower({"ABC", "DEF", {"GHI", {"JKL"}}}), {"abc", "def", {"ghi", {"jkl"}}});
%!assert(tolower(["ABC"; "DEF"]), ["abc"; "def"]);
%!assert(tolower({["ABC"; "DEF"]}), {["abc";"def"]});
%!assert(tolower(68), "d");
%!assert(tolower({[68, 68; 68, 68]}), {["dd";"dd"]});
%!test
%!  a(3,3,3,3) = "D";
%!  assert(tolower(a)(3,3,3,3), "d");

*/


DEFUNX ("toupper", Ftoupper, args, ,
    "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} toupper (@var{s})\n\
@deftypefnx {Built-in Function} {} upper (@var{s})\n\
Return a copy of the string or cell string @var{s}, with each lower-case\n\
character replaced by the corresponding upper-case one; non-alphabetic\n\
characters are left unchanged.  For example,\n\
\n\
@example\n\
@group\n\
toupper (\"MiXeD cAsE 123\")\n\
     @result{} \"MIXED CASE 123\"\n\
@end group\n\
@end example\n\
@seealso{tolower}\n\
@end deftypefn")
{
  octave_value retval;
  if (args.length () == 1)
    retval = args(0).xtoupper ();
  else
    print_usage ();

  return retval;
}

DEFALIAS (upper, toupper);

/*
 
%!error <Invalid call to toupper.*> toupper();
%!error <Invalid call to toupper.*> upper();
%!assert(toupper("octave"), "OCTAVE");
%!assert(toupper("123OCTave!_&"), "123OCTAVE!_&");
%!assert(toupper({"abc", "def", {"ghi", {"jkl"}}}), {"ABC", "DEF", {"GHI", {"JKL"}}});
%!assert(toupper(["abc"; "def"]), ["ABC"; "DEF"]);
%!assert(toupper({["abc"; "def"]}), {["ABC";"DEF"]});
%!assert(toupper(100), "D");
%!assert(toupper({[100, 100; 100, 100]}), {["DD";"DD"]});
%!test
%!  a(3,3,3,3) = "d";
%!  assert(toupper(a)(3,3,3,3), "D");

*/

DEFALIAS (gammaln, lgamma);

DEFALIAS (isfinite, finite);

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/

Generated by  Doxygen 1.6.0   Back to index